
Norbert Kessel / Veit Wadewitz Gupta SQLWindows32 - An Introduction

Publishing House: www.GuptaBooks.com

Copyright 2003
Publishing House Dr. N. Kessel
Eifelweg 37
53424 Remagen
Tel./Fax: (0) 2228-493
eMail: webmaster@forstbuch.de
The information contained in this book was prepared with great diligence;
nevertheless, no guarantee can be given against possible inclusion of error.
Translated from original German by Eva Tullier.
This book is protected by copyright; all rights reserved. This book may not be
reproduced in any form or otherwise exploited, either in part or whole, without the
authorʼs express written agreement.
An additional book is available from the publisher, entitled “SQLBase – An
Introduction”. Further information and downloads are found at the publisherʼs
homepage, above.

Publisherʼs homepage: www.GuptaBooks.com (international)
 www.ForstBuch.de (Germany)
Guptaʼs homepage: www.guptaworldwide.com
Printed by: www.business-copy.com

Norbert Kessel / Veit Wadewitz

Gupta SQLWindows32
Introductory Manual to

Programming Database Applications

ISBN: 3-935638-31-0

Copyright 2003
Publishing House Dr. N. Kessel
Eifelweg 37
53424 Remagen
Tel./Fax: (0) 2228-493
eMail: webmaster@forstbuch.de
The information contained in this book was prepared with great diligence;
nevertheless, no guarantee can be given against possible inclusion of error.
Translated from original German by Eva Tullier.
This book is protected by copyright; all rights reserved. This book may not be
reproduced in any form or otherwise exploited, either in part or whole, without the
authorʼs express written agreement.
An additional book is available from the publisher, entitled “SQLBase – An
Introduction”. Further information and downloads are found at the publisherʼs
homepage, above.

Publisherʼs homepage: www.GuptaBooks.com (international)
 www.ForstBuch.de (Germany)
Guptaʼs homepage: www.guptaworldwide.com
Printed by: www.business-copy.com

Norbert Kessel / Veit Wadewitz

Gupta SQLWindows32
Introductory Manual to

Programming Database Applications

ISBN: 3-935638-31-0

i

Contents
Chapter 1 Introduction ..1

Chapter 1.1 Tips for Programming Database Applications8
Chapter 1.2 An Introduction to Gupta Team Developer17

Chapter 1.2.1 Standard Practice with Gupta Team Developer.....................17
Chapter 1.2.1.1 The SQLWindows Startup Screen17
Chapter 1.2.1.2 Gupta Application Structure ..29
Chapter 1.2.1.3 Four Examples ..32

Chapter 1.2.1.3.1 Variations on a Theme of “hello world”32
Chapter 1.2.1.3.2 Displaying Data in a Table..35
Chapter 1.2.1.3.3 Curves: Business Images...42
Chapter 1.2.1.3.4 Creating New Classes ..43

Chapter 1.2.2 SAL, the SQLWindows Program Language...........................47
Chapter 1.2.2.1 Data Types..47
Chapter 1.2.2.2 Variables ...48
Chapter 1.2.2.3 Constants..57
Chapter 1.2.2.4 Statements ..59

Chapter 1.2.2.4.1 Set ..59
Chapter 1.2.2.4.2 If, Else, Else IF ...60
Chapter 1.2.2.4.3 Select Case ..61
Chapter 1.2.2.4.4 Call ...62
Chapter 1.2.2.4.5 On...63
Chapter 1.2.2.4.6 While, Loop...64
Chapter 1.2.2.4.7 Return...65

Chapter 1.2.2.5 Functions...69
Chapter 1.2.2.6 Operators ..71
Chapter 1.2.2.7 Comments...72

Chapter 1.2.3 Excursus in Object Oriented Programming............................73
Chapter 1.2.4 Objects and their Uses ..75

Chapter 1.2.4.1 Default Class Objects..75
Chapter 1.2.4.1.1 Top Level Objects...76
Chapter 1.2.4.1.1.1 Form Windows...78

Chapter 1.2.4.1.1.2 MDI Window...85
Chapter 1.2.4.1.1.3 Dialog Box..87
Chapter 1.2.4.1.1.4 Table Window ..88

Chapter 1.2.3.1.2 Child Objects ..129
Chapter 1.2.4.1.2.1 Background Text ..132
Chapter 1.2.4.1.2.2 Frame...133
Chapter 1.2.4.1.2.3 Line ..133
Chapter 1.2.4.1.2.4 Picture..134
Chapter 1.2.4.1.2.5 Data Field...139
Chapter 1.2.4.1.2.6 Multiline Text ..140
Chapter 1.2.4.1.2.7 List Box ..142
Chapter 1.2.4.1.2.8 Combo Box ..148
Chapter 1.2.4.1.2.9 Radio Buttons ..150
Chapter 1.2.4.1.2.10 Option Buttons ...151
Chapter 1.2.4.1.2.11 Check Box..155

ii

Chapter 1.2.4.1.2.12 Pushbuttons... 155
Chapter 1.2.4.1.2.13 Scroll Bars ... 157

Chapter 1.2.4.13 Menu Objects.. 158
Chapter 1.2.4.14 Graphics ... 164
Chapter 1.2.4.15 Creating Applications and Classes with a Wizard....... 167

Chapter 1.2.5 Errors .. 171
Chapter 1.3 Printing... 176

Chapter 1.3.1 Report Builder ... 177
Chapter 1.3.2 Printing Reports... 185

Chapter 1.3.2.1 Printing Data from a Table Window 185
Chapter 1.3.2.2 Printing Data Which Must First Be Read....................... 190

Chapter 1.3.3 Crosstabs .. 193
Chapter 1.3.3.1 Crosstabs with Report Builder 194
Chapter 1.3.3.2 Self-coding Crosstabs... 195

Chapter 1.3.4 Printing Graphs ... 199
Chapter 1.3.5 Printing Images ... 201

Chapter 1.4 SQLConsole .. 204
Chapter 1.5 SQLTalk... 210
Chapter 1.6 Database Explorer ... 212

Chapter 2 Sample Application ... 215
Chapter 2.1 Addresses (Customer, Courier) ... 216
Chapter 2.2 Specifying Activities ... 217
Chapter 2.3 Writing Jobs ... 218

Chapter 3 Expansion .. 221
Chapter 3.1 DDE with Excel and WinWord ... 221
Chapter 3.2 Drag and Drop ... 225
Chapter 3.3 Tooltip Pushbuttons ... 227
Chapter 3.4 Setting Properties with the Component Development Kit (CDK) 227
Chapter 3.5 Using Other Databases.. 232

Chapter 3.5.1 Louts Notes ... 232
Chapter 3.5.2 ODBC.. 233

Chapter 3.5.2.1 ODBC with dBASE Files ... 234
Chapter 3.5.2.2 ODBC with Access Databases (MDB-Files) 237

Chapter 3.6 Database Access with OLE DB.. 240
Chapter 3.6.1 Accessing with OLE DB .. 241

Chapter 2.7 Barcode ... 243
Chapter 3.8 SQL.INI .. 246

Chapter 4 ActiveX and COM... 249
Chapter 4.1 Basics .. 249
Chapter 4.2 ActiveX Integration in SQLWindows .. 250

Chapter 4.2.1 Introduction: Acrobat Reader... 250
Chapter 4.2.2 Excel as Example of Static Automation............................... 253

Chapter 4.2.2.1 Associating a Type Library with ActiveX Explorer......... 254
Chapter 4.2.2.2 Creating the Application.. 258
Chapter 4.2.2.3 ActiveX Integration with Word....................................... 261

Chapter 4.2.2.3.1 Creating a New Document 261

ii

Chapter 1.2.4.1.2.12 Pushbuttons... 155
Chapter 1.2.4.1.2.13 Scroll Bars ... 157

Chapter 1.2.4.13 Menu Objects.. 158
Chapter 1.2.4.14 Graphics ... 164
Chapter 1.2.4.15 Creating Applications and Classes with a Wizard....... 167

Chapter 1.2.5 Errors .. 171
Chapter 1.3 Printing... 176

Chapter 1.3.1 Report Builder ... 177
Chapter 1.3.2 Printing Reports... 185

Chapter 1.3.2.1 Printing Data from a Table Window 185
Chapter 1.3.2.2 Printing Data Which Must First Be Read....................... 190

Chapter 1.3.3 Crosstabs .. 193
Chapter 1.3.3.1 Crosstabs with Report Builder 194
Chapter 1.3.3.2 Self-coding Crosstabs... 195

Chapter 1.3.4 Printing Graphs ... 199
Chapter 1.3.5 Printing Images ... 201

Chapter 1.4 SQLConsole .. 204
Chapter 1.5 SQLTalk... 210
Chapter 1.6 Database Explorer ... 212

Chapter 2 Sample Application ... 215
Chapter 2.1 Addresses (Customer, Courier) ... 216
Chapter 2.2 Specifying Activities ... 217
Chapter 2.3 Writing Jobs ... 218

Chapter 3 Expansion .. 221
Chapter 3.1 DDE with Excel and WinWord ... 221
Chapter 3.2 Drag and Drop ... 225
Chapter 3.3 Tooltip Pushbuttons ... 227
Chapter 3.4 Setting Properties with the Component Development Kit (CDK) 227
Chapter 3.5 Using Other Databases.. 232

Chapter 3.5.1 Louts Notes ... 232
Chapter 3.5.2 ODBC.. 233

Chapter 3.5.2.1 ODBC with dBASE Files ... 234
Chapter 3.5.2.2 ODBC with Access Databases (MDB-Files) 237

Chapter 3.6 Database Access with OLE DB.. 240
Chapter 3.6.1 Accessing with OLE DB .. 241

Chapter 2.7 Barcode ... 243
Chapter 3.8 SQL.INI .. 246

Chapter 4 ActiveX and COM... 249
Chapter 4.1 Basics .. 249
Chapter 4.2 ActiveX Integration in SQLWindows .. 250

Chapter 4.2.1 Introduction: Acrobat Reader... 250
Chapter 4.2.2 Excel as Example of Static Automation............................... 253

Chapter 4.2.2.1 Associating a Type Library with ActiveX Explorer......... 254
Chapter 4.2.2.2 Creating the Application.. 258
Chapter 4.2.2.3 ActiveX Integration with Word....................................... 261

Chapter 4.2.2.3.1 Creating a New Document 261

iii

Chapter 4.2.2.3.2 Working with Bookmarks ..266
Chapter 4.3 Creating COM Applications with SQLWindows267

Chapter 4.3.1 Creating the Server Component ..267
Chapter 4.3.2 Creating the Client Component..274

Chapter 5 Web Development with SQLWindows..279
Chapter 5.1 Gupta Web Quick Objects..279

Chapter 5.1.1 The Empty Application...279
Chapter 5.1.2 Web Objects ..281

Chapter 5.1.2.1 Developing Web Clients..283
Chapter 5.1.2.1.1 Sample Java Script...286

Chapter 5.1.2.2 Implementing the Application ..287
Chapter 5.1.2.3 WebXMLTable ..289
Chapter 5.1.2.4 Other Web Clients...299

Chapter 6 Appendix..301
Chapter 6.1 Database Island ...301
Chapter 6.2 Terms and Definitions ..304
Chapter 6.3 Gupta SQLWindows Functions ..309

Chapter 6.3.1 System Functions ..309
Chapter 6.3.1.1 Editing Array Contents ..309
Chapter 6.3.1.2 Colors and Fonts...310
Chapter 6.3.1.3 Data Type Conversion ..310
Chapter 6.3.1.4 Processing Date Values..311
Chapter 6.3.1.5 ActiveX Functions ...311
Chapter 6.3.1.6 Debugging...311
Chapter 6.3.1.7 Dialog Boxes ...312
Chapter 6.3.1.8 Accessing DOS Files ..312
Chapter 6.3.1.9 Drag and Drop...313
Chapter 6.3.1.10 Edit Functions (Cut and Paste)314
Chapter 6.3.1.11 File Management ..314
Chapter 6.3.1.12 Setting Formats...315
Chapter 6.3.1.13 List Boxes and Combo Boxes316
Chapter 6.3.1.12 Windows Management..317
Chapter 6.3.1.15 Background Text ...318
Chapter 6.3.1.16 MDI (Multiple Document Interface) Windows319
Chapter 6.3.1.17 Sending Messages..319
Chapter 6.3.1.18 Diverse Functions ...319
Chapter 6.3.1.19 Numeric Functions ..321
Chapter 6.3.1.20 Images ..322
Chapter 6.3.1.21 Printing..323
Chapter 6.3.1.22 Report Processing...323
Chapter 6.3.1.23 Scrollbars ..324
Chapter 6.3.1.24 SQL...324
Chapter 6.3.1.25 Strings...325
Chapter 6.3.1.26 Table Windows..326

Chapter 6.4 Messages...329

Chapter 7 Index..333

iv

Foreword to the Second, Modified, and Expanded Edition
This book is intended to explain how to use the program packet Gupta
SQLWindows to develop databases which are executable under Windows 32-bit
operating systems. It is an introductory book of programming and as such,
targeted toward beginners; due to its structuring and many examples, however, it
may also prove helpful to advanced programmers.
Great emphasis has been laid upon presenting examples individually and
completely. In this way it is hoped that the examples can easily be tested in the
readerʼs own, smaller programs. It is, however, impossible to represent every
functionality. Selection of topics is inherently subjective; nonetheless, the chosen
selection should serve as a motivating start to programming database
applications with this powerful tool.
This edition details Gupta Team Developer versions 2.1 and 3.0 (beta 4 at time of
printing). The functionalities which were not or differently implemented in earlier
releases (1.x) are indicated on their respective pages in this book.
Because the basic functionality of Gupta Team Developer has not changed
significantly since the last version, the introductory capitals 1 and 2, with
exception of the new section 1.2.3 An Excursion in Object Oriented Programming,
have been included unchanged from earlier editions.
New additions are sections on the Component Development Kit, tooltip
pushbuttons, and WebDeveloper, which were also already available in CTD 1.x.
Further topics include OLE DB database integration, ActiveX integration – with
particular attention to Excel and Word –,COM server and client creation, and the
Web XML table, which are available from Gupta beginning with Team Developer
version 2.x. Especially these functionalities enable development of modern,
performant applications with SQLWindows.
The examples of configuration given in this book can be downloaded from the
publisherʼs homepage (www.guptabooks.com) under “Download”.
We would like to thank the Gupta Company, with special thanks to Martin Teetz.
Special thanks to EvaSara Toullier who translated into English.
Remagen and Lauf, January 2003
Dr. Norbert Kessel
Dr. Veit Wadewitz

iv

Foreword to the Second, Modified, and Expanded Edition
This book is intended to explain how to use the program packet Gupta
SQLWindows to develop databases which are executable under Windows 32-bit
operating systems. It is an introductory book of programming and as such,
targeted toward beginners; due to its structuring and many examples, however, it
may also prove helpful to advanced programmers.
Great emphasis has been laid upon presenting examples individually and
completely. In this way it is hoped that the examples can easily be tested in the
readerʼs own, smaller programs. It is, however, impossible to represent every
functionality. Selection of topics is inherently subjective; nonetheless, the chosen
selection should serve as a motivating start to programming database
applications with this powerful tool.
This edition details Gupta Team Developer versions 2.1 and 3.0 (beta 4 at time of
printing). The functionalities which were not or differently implemented in earlier
releases (1.x) are indicated on their respective pages in this book.
Because the basic functionality of Gupta Team Developer has not changed
significantly since the last version, the introductory capitals 1 and 2, with
exception of the new section 1.2.3 An Excursion in Object Oriented Programming,
have been included unchanged from earlier editions.
New additions are sections on the Component Development Kit, tooltip
pushbuttons, and WebDeveloper, which were also already available in CTD 1.x.
Further topics include OLE DB database integration, ActiveX integration – with
particular attention to Excel and Word –,COM server and client creation, and the
Web XML table, which are available from Gupta beginning with Team Developer
version 2.x. Especially these functionalities enable development of modern,
performant applications with SQLWindows.
The examples of configuration given in this book can be downloaded from the
publisherʼs homepage (www.guptabooks.com) under “Download”.
We would like to thank the Gupta Company, with special thanks to Martin Teetz.
Special thanks to EvaSara Toullier who translated into English.
Remagen and Lauf, January 2003
Dr. Norbert Kessel
Dr. Veit Wadewitz

1

Chapter 1
Introduction

A Few Comments About Hard Drive Directories
Complete installation of Gupta under Windows 32-bit creates several directories
whose contents are briefly defined in the following.
The following directories are created on the hard drive selected for installation:
• \Gupta (starting version 3.0) or \Centura Includes the data necessary for

programming database applications.
• \Sql80: If specified during installation that the local SQLBase be installed,

this will include the data necessary to do so (it is alternatively possible to
work with a database in a network directory; the above directory is then
unnecessary).

The following table includes the subdirectories included in both directories, and
the extensions of their files.
Directory Subdirectory File Type (Extension)
\Gupta 2.1 \AXLibs ActiveX APLs
 \Deploy Exe, Wse, Ini
 \Docs HTM
 \Inc H
 \Island Dbs, Log
 \Samples Apl, App, Bmp, C, Csv, Def, Dll, Exe,

Ico, Ifx, Ini, Mak, Ora, Qrp, Reg, Sql,
Wts, Xls, Cqt, Cpp, Dsp, Dsw, H

 \Sysproc Sql
 \Templates App
 \Tools Apt, exe
 \Tutorial App, Dll, Exe, Tlb, Ico, Gif
 \uninstall Exe
SqlBase 8.0 \Alarms Fil

\Books Pdf, HTML
 \include Inl, H
 \island Dbs, Log
 \Java Class, HTM
 \lib Lib, Dll
 \Redist Setup.exe
 \relnotes_files Release notes (Htm, Jpg)
 \samples Sql, C, Dll, Java, Dsp, Dsw, Cpp, H,

Rc, Mak, Exe, Vbp
 \scripts Sql
 \src Cpp, Dsp, Dsw, H, Rc, Rc2
 \Topic HTM

2

The Directory DEPLOY
Gupta installation creates a directory named DEPLOY. This directory contains
files with the extension WSE, INI, and an EXE file (deploy21.exe under
SQLWindows 2.1).
The files create the environment necessary for running an application on a
computer. In other words, after an application program has been written with
Gupta, this application is saved as an EXE file (in Gupta over the menu option
Project/Build Settings – Exe). Besides this EXE file and possibly the DBS file with
the database – as well as ISO or BMP files, the customer must also be given all
of the files included in the DEPLOY directory. Altogether, then, the following
packet must be included in delivery of a program which has been developed with
Team Developer:
• EXE file created with Gupta Team Developer;
• All files in the DELPOY directory;
• DBS file(s) including data;
• SQLBase (e.g., SQLBase Runtime or other SQLBase which customer

obtains).
Tip: As mentioned above, all applications that will be installed on an external
computer require the files included in the DEPLOY directory. There are two ways
to do this: The CD with the complete development environment can be taken to
the customer site and the files installed with the installation program. Otherwise, it
is best to burn the files (in the current version these are 3 files with a total of abut
17 MB) from the DEPLOY directory onto a CD together with the application.

Other Important Programs for Installation
Besides the development environment, a few other programs are installed during
Gupta installation. The following overview offers a list of the applications, their
program names, and a brief description of each.

Name File Name Description
Gupta SQLWindows 2.1/3.0 Cbi21/30.Exe Development environment
Repository Setup Wizard 2.1/3.0 Tmdbi21/30.Exe Installs database for repository

(used by Team Development)
Sample Application Explorer Sampler.Exe Sample application
SQLBase Database Engine
32bit

Dbnt1sv.exe Database engine

SQLConsole DBA Utility 7.6/8.0 Sqlcon76/80.Exe Program for database file
maintenance

SQLTalk Interactive SQL Sqltalk.Exe Dialog program for SQL
commands

Team Developer Help 2.1/3.0 Centura/Gupta.Hlp Help file for development

2

The Directory DEPLOY
Gupta installation creates a directory named DEPLOY. This directory contains
files with the extension WSE, INI, and an EXE file (deploy21.exe under
SQLWindows 2.1).
The files create the environment necessary for running an application on a
computer. In other words, after an application program has been written with
Gupta, this application is saved as an EXE file (in Gupta over the menu option
Project/Build Settings – Exe). Besides this EXE file and possibly the DBS file with
the database – as well as ISO or BMP files, the customer must also be given all
of the files included in the DEPLOY directory. Altogether, then, the following
packet must be included in delivery of a program which has been developed with
Team Developer:
• EXE file created with Gupta Team Developer;
• All files in the DELPOY directory;
• DBS file(s) including data;
• SQLBase (e.g., SQLBase Runtime or other SQLBase which customer

obtains).
Tip: As mentioned above, all applications that will be installed on an external
computer require the files included in the DEPLOY directory. There are two ways
to do this: The CD with the complete development environment can be taken to
the customer site and the files installed with the installation program. Otherwise, it
is best to burn the files (in the current version these are 3 files with a total of abut
17 MB) from the DEPLOY directory onto a CD together with the application.

Other Important Programs for Installation
Besides the development environment, a few other programs are installed during
Gupta installation. The following overview offers a list of the applications, their
program names, and a brief description of each.

Name File Name Description
Gupta SQLWindows 2.1/3.0 Cbi21/30.Exe Development environment
Repository Setup Wizard 2.1/3.0 Tmdbi21/30.Exe Installs database for repository

(used by Team Development)
Sample Application Explorer Sampler.Exe Sample application
SQLBase Database Engine
32bit

Dbnt1sv.exe Database engine

SQLConsole DBA Utility 7.6/8.0 Sqlcon76/80.Exe Program for database file
maintenance

SQLTalk Interactive SQL Sqltalk.Exe Dialog program for SQL
commands

Team Developer Help 2.1/3.0 Centura/Gupta.Hlp Help file for development

3

environment
Team Object Manager 2.1/3.0 Tmi21/30.Exe Together with repository database

for management of projects and
their versions

The term “Gupta SQLWindows” is used in the literature and online documentation
together with the term “Gupta Team Developer”, also in this book.
Some of the above programs and files are detailed below.

SQLBase 32 Bit Server
Normally a self-created application contains a connection to one or more
databases. There is, then, usually a system which consists of two programs: the
actual application itself, which was created by the programmer, and the database
engine, which publishes the data that is saved in the DBS database. SQL
commands, which are included in the application, are sent to the database engine
and are there translated and valuated; result sets or messages may then be
“sent” back to the application.
SQLBase Bit Server is the database engine that provides data, receives and
executes incoming SQL commands, and sends result sets back to the
application. If the function SqlConnect() is used in Team Developer, then, where
applicable, the database is started (or the required router or ODBC driver);
otherwise, a connection to the database is established (SQL handles, explained
below, are required for this).
After the database engine has been started, clicking the icon in the status bar
display the following image:

4

Illus.: Database engine with various windows with information (windows opened
from the menu Display/All)

The individual windows offer information about currently opened databases and
system load.

Files Which (Could) Appear When Working With Gupta Team
Developer

Basically, working with Team Developer can create three types of files: program
files, libraries, or COM servers.
• Program files can be saved in various formats: as APP file (in normal or

compiled form), or as APT file (as normal or indented text).

• Library files contain functions which were written with Team Developer and
saved in a separate file to make them utile for other applications. A command
that integrates this APL or APD file is enough to make these functions utile
for other programs. A description of how this functions is given below.

• COM servers are created in compiled form as EXE or DLL (local) or as MTS-
DLL (Microsoft Transaction Server).

4

Illus.: Database engine with various windows with information (windows opened
from the menu Display/All)

The individual windows offer information about currently opened databases and
system load.

Files Which (Could) Appear When Working With Gupta Team
Developer

Basically, working with Team Developer can create three types of files: program
files, libraries, or COM servers.
• Program files can be saved in various formats: as APP file (in normal or

compiled form), or as APT file (as normal or indented text).

• Library files contain functions which were written with Team Developer and
saved in a separate file to make them utile for other applications. A command
that integrates this APL or APD file is enough to make these functions utile
for other programs. A description of how this functions is given below.

• COM servers are created in compiled form as EXE or DLL (local) or as MTS-
DLL (Microsoft Transaction Server).

5

Preparatory Literature
Besides this book, which provides a complete introduction to programming
database applications, Gupta includes a few online books and documents which
should definitely be read.
The following is an overview of the most important documents.
Title Type Where to Find Contents
Introducing Gupta File Books Online Introduction to Gupta
Developing with Gupta
SQLWindows

File Books Online General tips about
developing applications

Reporting with Gupta
SQLWindows

File Books Online Programming reports

SQLConsole Guide File Books Online Introduction to
SQLConsole

SQLBase SQLTalk
Command Reference

File Books Online Introduction to SQLTalk

Developing: Chapter 7 -
SAL (Scalable Application
Language)

File Books Online
(spyglass button)

SAL functions

Developing: Chapter 17 -
Libraries

File Books Online Libraries

Extending: Chapter 11 -
Visual Toolchest

File Books Online Advanced functions (see
also VTTEST.APP in
Samples directory)

How This Book is Composed
This book is divided into the following chapters:
Chapter 1 is an introduction to programming and offers tips to using the

language SQL (Structured Query Language) and SAL (Scalable
Application Language) as well as detailed descriptions of the
objects usable in an application. Besides many examples of using
Table Windows, here are extensive comments about printing data of
every type.

Chapter 2 introduces a sample application which can be downloaded for free.
Chapter 3 details additional aspects of programming; e.g., tips about DDE,

working in the net, using other databases, about barcodes, tooltips,
and the CDK.

Chapter 4 treats ActiveX integration and creation of COM servers and clients.
Chapter 5 describes the development of web applications with SQLWindows.
Chapter 6 contains overviews and summaries of functions and messages.
Chapter 7 is this bookʼs index.

6

Important Terms
Many terms are so fundamental that it is worthwhile to explain them briefly here.
Extensive, detailed definitions are found in later sections.
Front-end, back-end, client-server: An application is termed front end which
exchanges commands or data with a back-end (below) application; together, both
are called a client-server system. Here, a front end is understood an application
which was created with Gupta Team Developer; the term should, though, be
viewed more globally, because basically (and basically means that there are
exceptions) every Windows application can function as client or as server. For
instance, WinWord or Excel (specifically, a document opened therein) can be
used as client for data taken from a database, which was opened using
SQLBase.
Database or database engine: A program that manages data which is saved in a
DBS file. Specifically, new data records are added to a table by the databank
engine; data records marked for deletion are deleted by the engine; result sets
created by inquiries are created by the databank engine and sent to the front end
from which the command was sent. In addition to these tables, databases include
indexes and a few other objects which are usually created/deleted with the
program SQLConsole (although it is also possible to create a databank within the
Gupta Team Developer development environment: menu option Database/
Database Explorer).
Table: Data such as, for example, customer information, is saved in the form of a
so-called table. Each table has a unique name and is defined by a structure.
Tables are created, edited, or deleted by the user with the program SQLConsole
or SQLTalk; they can include up to 215 data records (Note: it is also possible to
create, etc., data records within Team Developer; however, this should only be
practiced with test data because it is better to use SQLConsole.). The term table
is used in two forms; first, for tables that contain data which is saved in a
database; and second, for so-called table objects, which are embedded in an
application and there display e.g. data from a database table. Aside from tables
which are created by a user, a database always contains such tables which are
important to system operation; e.g., a table Syscolumns, in which all columns (of
all tables) are listed. These tables can be used if an overview of the tables or
table structures can be printed.
Index: An index is a help table which enables faster data selection, search, or
assortment in a database. The response time is usually drastically minimized
when selecting a few different data records from many, so that indexes are
generally recommendable, even if data entry or deletion is somewhat slower.
Query: A Query is the command to select from a given set of data records a
portion which meets a specification; e.g., to select from a group of invoices those
which are yet unpaid.

7

Data type: Data types define what type of information is to be saved in a variable
or in the column of a table. It is important to remember that file types must be
defined during coding and in a tableʼs structure (occasionally data types must be
converted before they can be saved; this is explained below).
Normalization: Normalization removes redundancies; i.e., data is saved in such
a way that, for example, a customer data record only appears once and all
invoices which were created for this customer can be assigned to this customer
using the customer number.
SQL (Structured Query Language): SQL is a language which can be used to
create, edit, or delete databases, tables, data records, etc. This language is
typically used to edit data records.
SAL (Scalable Application Language): SAL is the language used in Gupta Team
Developer to code actions which should occur with objects on the screen. For
example, a function named SalTblPopulate() is used to fill a table object in an
application with the data records of a database table. Gupta Team Developer has
over 400 such functions.

6

Important Terms
Many terms are so fundamental that it is worthwhile to explain them briefly here.
Extensive, detailed definitions are found in later sections.
Front-end, back-end, client-server: An application is termed front end which
exchanges commands or data with a back-end (below) application; together, both
are called a client-server system. Here, a front end is understood an application
which was created with Gupta Team Developer; the term should, though, be
viewed more globally, because basically (and basically means that there are
exceptions) every Windows application can function as client or as server. For
instance, WinWord or Excel (specifically, a document opened therein) can be
used as client for data taken from a database, which was opened using
SQLBase.
Database or database engine: A program that manages data which is saved in a
DBS file. Specifically, new data records are added to a table by the databank
engine; data records marked for deletion are deleted by the engine; result sets
created by inquiries are created by the databank engine and sent to the front end
from which the command was sent. In addition to these tables, databases include
indexes and a few other objects which are usually created/deleted with the
program SQLConsole (although it is also possible to create a databank within the
Gupta Team Developer development environment: menu option Database/
Database Explorer).
Table: Data such as, for example, customer information, is saved in the form of a
so-called table. Each table has a unique name and is defined by a structure.
Tables are created, edited, or deleted by the user with the program SQLConsole
or SQLTalk; they can include up to 215 data records (Note: it is also possible to
create, etc., data records within Team Developer; however, this should only be
practiced with test data because it is better to use SQLConsole.). The term table
is used in two forms; first, for tables that contain data which is saved in a
database; and second, for so-called table objects, which are embedded in an
application and there display e.g. data from a database table. Aside from tables
which are created by a user, a database always contains such tables which are
important to system operation; e.g., a table Syscolumns, in which all columns (of
all tables) are listed. These tables can be used if an overview of the tables or
table structures can be printed.
Index: An index is a help table which enables faster data selection, search, or
assortment in a database. The response time is usually drastically minimized
when selecting a few different data records from many, so that indexes are
generally recommendable, even if data entry or deletion is somewhat slower.
Query: A Query is the command to select from a given set of data records a
portion which meets a specification; e.g., to select from a group of invoices those
which are yet unpaid.

7

Data type: Data types define what type of information is to be saved in a variable
or in the column of a table. It is important to remember that file types must be
defined during coding and in a tableʼs structure (occasionally data types must be
converted before they can be saved; this is explained below).
Normalization: Normalization removes redundancies; i.e., data is saved in such
a way that, for example, a customer data record only appears once and all
invoices which were created for this customer can be assigned to this customer
using the customer number.
SQL (Structured Query Language): SQL is a language which can be used to
create, edit, or delete databases, tables, data records, etc. This language is
typically used to edit data records.
SAL (Scalable Application Language): SAL is the language used in Gupta Team
Developer to code actions which should occur with objects on the screen. For
example, a function named SalTblPopulate() is used to fill a table object in an
application with the data records of a database table. Gupta Team Developer has
over 400 such functions.

8

Chapter 1.1
Tips for Programming Database Applications

General
A database application is a program (an EXE file) that was created with Gupta
Team Developer and includes objects (e.g., a table object, data fields, etc.). To
display data from a databank table, SQL commands must be sent in the SAL
language to the databank engine, which then valuates the data.

Applied Data
In this book, the introduction into programming uses data which has been
transmitted to the hard drive during installation. It is found in the database named
Island.Dbs (\Sqlbase\Island\Island.dbs). This should ensure a quick start. The
following sections describe a few of the tables which are included in this database
and used for this book (the appendix to this book includes an overview of all
tables included in Island.Dbs).

SQL
Gupta uses two parallel languages, SAL (Scalable Application Lanuage) and SQL
(Structured Query Language). The following offers a few fundamental comments
about SQL.
The database language SQL is used for all access to a database. SAL, on the
other hand, is used for application process control (e.g., when a window opens, a
report is printed, etc.). Sometimes elements of both languages are used in
combination; namely then, when a SAL function is invoked which works with data
from tables. Later, an example of this will be given using the function
SalTabPopulate(), a SAL function which is used to fill a table with data records
from a database, and whose parentheses must enclose a SQL command.
Here, only a few SQL commands are given which enable data records to be
entered into a table, to be edited, and to be deleted. This should ensure that even
the SQL layman can quickly start programming databank applications.
Some SQL Commands:
Command Actions
select customername, surname,
forename from customer

Read and display contents of table
Customer of columns Customer name,
Surname, and Forename.

9

select, surname, forename
from customer
where customer number = 10000

Read content of columns Surname and
Forename from data record with customer
number 10000.

delete from invoices
where status = 2

Delete from table Invoices all data records
whose content in Status field is 2.

update item
set price = price * 1.10

Replace in Item table content of Price field
with the value of Price * 1.10; so, the prices
of all items will be increased 10%.

select max
from customernumber +1

Detect larges customer number and add
the number 1 to it. Often used to create a
new (numerical) customer number.

The commands can (and should) be tested with a front end program like
SQLTalk, SQLConsole, or Database Explorer, for example, within Gupta.

Libraries
Libraries are files filled with functions. These functions (which can be written
using SAL, or C) are often the results of complex applications in which certain
actions are repeatedly necessary; e.g., opening a database, deleting data from
forms, or reading data records from a table. Once the program code for these
functions has been constructed so that they can be invoked using variables or
parameters, the functions are saved in a separate APL file. This APL file does not
include anything other than the functions – i.e., no forms or table windows.
Implementing the APL file in an application (which typically ends with APP or
APT) makes all functions available for this application. It is also possible to furnish
the file Newapp.App (below) with this entry, so that the libraries are available in
every new application. The source code for integrated libraries is displayed by
default in blue in the main application and cannot be edited there.
Dynamic libraries (APD) are a second type of library. They include graphic
components as well as functionality and are themselves “mini” applications. APDs
are dynamically integrated in runtime and can communicate with the application
which invokes them. In this way it is possible to share program windows between
multiple applications without including the full source code in every application.
APDs therefore mainly serve to conserve client resources. The APDʼs functional
code is transparent in the main application; the string !_Exported must be set in
the APD after the declaration of top level objects and functions in order to see
and target these objects in the main application.

Classes
A class is a template which specifies objectsʼ properties. For instance, a table
class can be preset with variables so that later only the variablesʼ contents need
to be defined. One of the first is the so-called standard class, in which objectsʼ

8

Chapter 1.1
Tips for Programming Database Applications

General
A database application is a program (an EXE file) that was created with Gupta
Team Developer and includes objects (e.g., a table object, data fields, etc.). To
display data from a databank table, SQL commands must be sent in the SAL
language to the databank engine, which then valuates the data.

Applied Data
In this book, the introduction into programming uses data which has been
transmitted to the hard drive during installation. It is found in the database named
Island.Dbs (\Sqlbase\Island\Island.dbs). This should ensure a quick start. The
following sections describe a few of the tables which are included in this database
and used for this book (the appendix to this book includes an overview of all
tables included in Island.Dbs).

SQL
Gupta uses two parallel languages, SAL (Scalable Application Lanuage) and SQL
(Structured Query Language). The following offers a few fundamental comments
about SQL.
The database language SQL is used for all access to a database. SAL, on the
other hand, is used for application process control (e.g., when a window opens, a
report is printed, etc.). Sometimes elements of both languages are used in
combination; namely then, when a SAL function is invoked which works with data
from tables. Later, an example of this will be given using the function
SalTabPopulate(), a SAL function which is used to fill a table with data records
from a database, and whose parentheses must enclose a SQL command.
Here, only a few SQL commands are given which enable data records to be
entered into a table, to be edited, and to be deleted. This should ensure that even
the SQL layman can quickly start programming databank applications.
Some SQL Commands:
Command Actions
select customername, surname,
forename from customer

Read and display contents of table
Customer of columns Customer name,
Surname, and Forename.

9

select, surname, forename
from customer
where customer number = 10000

Read content of columns Surname and
Forename from data record with customer
number 10000.

delete from invoices
where status = 2

Delete from table Invoices all data records
whose content in Status field is 2.

update item
set price = price * 1.10

Replace in Item table content of Price field
with the value of Price * 1.10; so, the prices
of all items will be increased 10%.

select max
from customernumber +1

Detect larges customer number and add
the number 1 to it. Often used to create a
new (numerical) customer number.

The commands can (and should) be tested with a front end program like
SQLTalk, SQLConsole, or Database Explorer, for example, within Gupta.

Libraries
Libraries are files filled with functions. These functions (which can be written
using SAL, or C) are often the results of complex applications in which certain
actions are repeatedly necessary; e.g., opening a database, deleting data from
forms, or reading data records from a table. Once the program code for these
functions has been constructed so that they can be invoked using variables or
parameters, the functions are saved in a separate APL file. This APL file does not
include anything other than the functions – i.e., no forms or table windows.
Implementing the APL file in an application (which typically ends with APP or
APT) makes all functions available for this application. It is also possible to furnish
the file Newapp.App (below) with this entry, so that the libraries are available in
every new application. The source code for integrated libraries is displayed by
default in blue in the main application and cannot be edited there.
Dynamic libraries (APD) are a second type of library. They include graphic
components as well as functionality and are themselves “mini” applications. APDs
are dynamically integrated in runtime and can communicate with the application
which invokes them. In this way it is possible to share program windows between
multiple applications without including the full source code in every application.
APDs therefore mainly serve to conserve client resources. The APDʼs functional
code is transparent in the main application; the string !_Exported must be set in
the APD after the declaration of top level objects and functions in order to see
and target these objects in the main application.

Classes
A class is a template which specifies objectsʼ properties. For instance, a table
class can be preset with variables so that later only the variablesʼ contents need
to be defined. One of the first is the so-called standard class, in which objectsʼ

10

properties (e.g., data fields) are preset. When a data field is entered in a form, the
data type is preset as “string”; i.e., the data field just entered expects string data
(numeric data, in contrast, cannot be represented and leads to an error
message). Data fields in which numeric data must be represented are of course
often required. In this case instead of each time changing the type of string to
number and setting the alignment from left to right and setting the format (the
number of decimal places), a new class is simply created, in which these
properties are preset once. If thereafter a new data field is entered in a form, it is
possible to choose between the standard classes; subsequent modification is
then unnecessary.

Objects
An applicationʼs object is a pushbutton, a table window, etc.; so, parts of the
application which can be furnished with program code. Objects also process
messages which can be processed when an event (like a mouse click) occurs.
There are standard, quick, and self-defined objects, which are categorized within
respective classes.
Generally there are two types of objects: top level or parent objects, which serve
as containers for child objects. Top level objects can contain parameters,
variables, functions, possibly menus and actions, and are changeable in size
during runtime. Child objects can only contain actions. The only exception is the
child table window, which will be discussed in more detail later.
Usually one starts out in Gupta using standard class objects to create smaller or
even larger applications. At the latest, though, by the time a pushbutton is coded
to minimize a form window or to close an application, the question arises whether
there might not be a simpler way. There is; however, just when one is beginning,
itʼs complicated, because it is necessary to abstract and to recognize correlation
(e.g., all pushbuttons to minimize a window).
As experience grows, though, it becomes apparent what is common (or,
dissimilar) between similar modules. Correlation can then be so generally coded
in the form of a class or an object, that it can be integrated into all future
applications.

Messages
Messages are sent within SAL applications to provide information about specific
program steps or performed actions. Thus the message “SAM_Click” offers a
simply way to establish reference between a pushbutton and the userʼs action
(namely a click on this pushbutton). In addition to prefab messages, which begin
with “SAM” (list found in appendix),it is possible to create and manage individual
messages. These messages, which could begin with “AM” (can be anything but

10

properties (e.g., data fields) are preset. When a data field is entered in a form, the
data type is preset as “string”; i.e., the data field just entered expects string data
(numeric data, in contrast, cannot be represented and leads to an error
message). Data fields in which numeric data must be represented are of course
often required. In this case instead of each time changing the type of string to
number and setting the alignment from left to right and setting the format (the
number of decimal places), a new class is simply created, in which these
properties are preset once. If thereafter a new data field is entered in a form, it is
possible to choose between the standard classes; subsequent modification is
then unnecessary.

Objects
An applicationʼs object is a pushbutton, a table window, etc.; so, parts of the
application which can be furnished with program code. Objects also process
messages which can be processed when an event (like a mouse click) occurs.
There are standard, quick, and self-defined objects, which are categorized within
respective classes.
Generally there are two types of objects: top level or parent objects, which serve
as containers for child objects. Top level objects can contain parameters,
variables, functions, possibly menus and actions, and are changeable in size
during runtime. Child objects can only contain actions. The only exception is the
child table window, which will be discussed in more detail later.
Usually one starts out in Gupta using standard class objects to create smaller or
even larger applications. At the latest, though, by the time a pushbutton is coded
to minimize a form window or to close an application, the question arises whether
there might not be a simpler way. There is; however, just when one is beginning,
itʼs complicated, because it is necessary to abstract and to recognize correlation
(e.g., all pushbuttons to minimize a window).
As experience grows, though, it becomes apparent what is common (or,
dissimilar) between similar modules. Correlation can then be so generally coded
in the form of a class or an object, that it can be integrated into all future
applications.

Messages
Messages are sent within SAL applications to provide information about specific
program steps or performed actions. Thus the message “SAM_Click” offers a
simply way to establish reference between a pushbutton and the userʼs action
(namely a click on this pushbutton). In addition to prefab messages, which begin
with “SAM” (list found in appendix),it is possible to create and manage individual
messages. These messages, which could begin with “AM” (can be anything but

11

should be distinguishable from SAM messages), make it possible to write more
flexible programs.
This is of great import to programmers: programs under Windows no longer
rigidly dictate what a user can or cannot do, as was possible and even normal
with DOS programs. Now a program must be created so that it is possible to react
anytime to every input from a user. The programmer must ensure in advance that
all possible user input is correctly recorded and processed.
While this is not necessarily simple when using program languages like “C” or
“Pascal”, Team Developer has already prepared for it; it already has the ability to
react to multifaceted input. For example, the programmer only needs to check
whether the user pushed the OK button in a previously active window. Because
the program code which will then be executed is connected to this pushbutton,
the userʼs input can be further processed correctly.
Messages are triggered by events. These can come from hardware (mouse,
keyboard), the operating system (e.g. timer), or the application (e.g., when a limit
value is exceeded).
Gupta Team Developer distinguishes between three types of messages (more
info is found in Team Developer under Help/Messages):
• Messages with the prefix SAM, which are predefined in the system,
• Messages with the prefix WM, which are predefined by Microsoft, and
• Individual, self-defined messages, which begin with, for example, AM (Am is

not predefined but is normally used).

Examples of SAM Messages:
SAM Message Meaning/Trigger
SAM_AppStartup Starts application
SAM_App_Exit Ends application
SAM_SqlError Error in an SQL command
SAM_Click Left mouse click (corresponds to

WM_LBUTTONDOWN)
SAM_Create After an object has been created
SAM_SetFocus Object contains focus
SAM_Destroy Object is destroyed (removed from screen)
SAM_Report* Multiple messages for printing reports
SAM_DDE* Multiple messages for DDE protocol

The messages can not be used randomly. For example, in an applications section
application actions (i.e., at the very top) only three messages can be used
(SAM_AppStartup, SAM_App_Exit, SAM_SqlError). In contrast, SAM_Create can
be used with almost every object; in other words, the message can be used and
edited for a form window as well as for a pushbutton.

12

Note: If the Visual Toolchest Library is integrated in an application, additional
messages are available; like VTM_RightClick, VTM_MiddleClick, and
VTM_RightDoubleClick, etc. These messages are edited just like SAM*
messages and radically increase application flexibility.

Examples of WM Messages:
Messages with the prefix WM come from Microsoft Windows. They are defined in
the file Windows.H and can be viewed there (the file is included with the MS
Windows SDK and MS C++).
SAM Message Meaning/Trigger
WM_LBUTTONDOWN Left mouse button was pressed
WM-LBUTTONUP Left mouse button was released
WM-RBUTTONDOWN Right mouse button was pressed
WM-DDE* Multiple messages for DDE

Examples of AM Messages:
These messages are predefined by the programmer; a certain amount of
experience is usually necessary to recognize their great usefulness. The following
overview can therefore not be “complete” and should here serve only as stimulus.
AM Message Meaning/Trigger
AM_Empl_Select When the table is filled for displaying employee data
AM_Inv_Select Ditto, for the Invoice table (among the tables included

in the Island.Dbs database)
To declare such a message, the following entry must be made in the programʼs
Constants/User section:

Constants
System
User

Number: AM_Empl_Select = SAM_User + 1

Messages are always of the type number, because internally, numbers are
always used. In addition to setting this type, the messageʼs name must also be
entered (always case sensitive). Then comes the system constant SAM_User.
This stands for the last defined message in the system; the number 1 is added to
receive a new, as yet unused number. In the same way, the next message would
receive an available number with SAM_User +2. This method avoids the chore of
searching for available numbers; furthermore, a number thus coded can also be
used in new Team Developer program versions without modification (new
versions commonly use more system constants than older ones).

12

Note: If the Visual Toolchest Library is integrated in an application, additional
messages are available; like VTM_RightClick, VTM_MiddleClick, and
VTM_RightDoubleClick, etc. These messages are edited just like SAM*
messages and radically increase application flexibility.

Examples of WM Messages:
Messages with the prefix WM come from Microsoft Windows. They are defined in
the file Windows.H and can be viewed there (the file is included with the MS
Windows SDK and MS C++).
SAM Message Meaning/Trigger
WM_LBUTTONDOWN Left mouse button was pressed
WM-LBUTTONUP Left mouse button was released
WM-RBUTTONDOWN Right mouse button was pressed
WM-DDE* Multiple messages for DDE

Examples of AM Messages:
These messages are predefined by the programmer; a certain amount of
experience is usually necessary to recognize their great usefulness. The following
overview can therefore not be “complete” and should here serve only as stimulus.
AM Message Meaning/Trigger
AM_Empl_Select When the table is filled for displaying employee data
AM_Inv_Select Ditto, for the Invoice table (among the tables included

in the Island.Dbs database)
To declare such a message, the following entry must be made in the programʼs
Constants/User section:

Constants
System
User

Number: AM_Empl_Select = SAM_User + 1

Messages are always of the type number, because internally, numbers are
always used. In addition to setting this type, the messageʼs name must also be
entered (always case sensitive). Then comes the system constant SAM_User.
This stands for the last defined message in the system; the number 1 is added to
receive a new, as yet unused number. In the same way, the next message would
receive an available number with SAM_User +2. This method avoids the chore of
searching for available numbers; furthermore, a number thus coded can also be
used in new Team Developer program versions without modification (new
versions commonly use more system constants than older ones).

13

Messages can be sent within an application with help from the function
SalSendMsg(), SalSendMsgToChiildren(), SalSendClassMessage(),
SalSendClassMessageNamed(). The following construction would then ensure
that, for example, the message to fill a table window with table data is sent:

On SAM_Create
 Call SalSendMsg(tblEmployee, AM_Empl_select, 0, 0)

This means that after the table window has been created, the message
AM_Empl_select is sent.
To receive this message elsewhere, the following code is possible:

On AM_Empl_Select
 Call SalTblPopulate(...)

User Control
User control is understood here as the userʼs first contact with the application.
This contact should be set up so that the user can work with the application
without difficulty. Three basic options lend themselves for this:
• The application is controlled from a “classic menu”.

Illus.: Classic menu (displayed in a form windowʼs layout mode)

• The application is controlled from a form window in which the individual
program modules are invoked with pushbuttons.

14

Illus. Control from form window

• The application is controlled from a central MDI (Multiple Document
Interface) window (see also sample application in Chap. 2).

Illus.: Central MDI window (the names of the child windows to be seen on the left)

A few comments to the possible and very sensible combinations between the
three types:
Control Comments
Classic menu For routine users, as it presumes knowledge of

shortcuts, etc.; many actions or program

14

Illus. Control from form window

• The application is controlled from a central MDI (Multiple Document
Interface) window (see also sample application in Chap. 2).

Illus.: Central MDI window (the names of the child windows to be seen on the left)

A few comments to the possible and very sensible combinations between the
three types:
Control Comments
Classic menu For routine users, as it presumes knowledge of

shortcuts, etc.; many actions or program

15

modules can be converted to menu options.
Form window with
pushbuttons

For inexperienced users, as available actions
are always visible and donʼt need to be sought
in menu structures.

Central MDI window Fundamental modules (e.g., addresses,
assignments) can be permanently visibly
arranged; actions concerned with details (e.g.,
deleting data records) are only displayed as
needed.

Help in Gupta
The menu option Help can be used to find help with functions, messages, etc.;
furthermore, electronic manuals can be found in the Team Developer option
Books Online.
The Coding Assistant can also be used when coding an application. The Coding
Assistant always displays the functions or messages which can be inserted into
the currently active location, and can be opened with the key combination Alt+2
(or from the Tools menu).

Illus.: Coding Assistant

Popup help is also integrated in Team Developer versions 3.0 and later. Context
sensitive help is automatically displayed during coding showing the programmer
the available options.

Illus.: Context sensitive help

16

Furthermore, an additional window, the so-called Controls window, can be
displayed with the objects (opened with Alt+4 or from the Tools menu).

Illus.: Controls with available objects (top) and classes (below).

16

Furthermore, an additional window, the so-called Controls window, can be
displayed with the objects (opened with Alt+4 or from the Tools menu).

Illus.: Controls with available objects (top) and classes (below).

17

Chapter 1.2
An Introduction to Gupta Team Developer

In this chapter the programmer is brought into first contact with Gupta Team
Developer. After general tips for using the software, examples are shown which
illustrate various aspects of programming. Thereafter, the basics of SAL (Scalable
Application Language) are described in detail. Lastly, tips about objects and
classes as well as an introduction to the integration wizard are given.

Chapter 1.2.1
Standard Practice with Gupta Team Developer

The programming process with Gupta usually takes the following steps:
• Creating a source code (manually, self-programmed, poss. using quick

objects)
• Compiling, creating an EXE file
• Installing library files (content of DEPLOY directory) on target computer

together with EXE file and any files for reports
• Installing the DB system
• Startup
Debugging and additional modifications are normally also necessary to fine tune
the application to the customerʼs wishes. As mentioned above, brief, respective
examples ensure that the material is easily understood. The examples have been
specifically selected to be comprehendible with a minimum of effort (each
example provides all necessary “grips” so that the beginner doesnʼt have to
search for, say, variables which need to be defined somewhere). In addition –
except in the chapter which is solely present for quick objects – as few prefab
modules are used as possible because experience shows that the program code
can thus be implemented in individual programs more quickly.

Chapter 1.2.1.1
The SQLWindows Startup Screen

The following illustration depicts the startup screen from SQLWindows as it
appears after the program has been opened (a new Application has been
started).

18

Illus.: SQLWindows startup screen (explanations below)

A few comments about the startup screen:
• The screen is divided into two main sections, called panes. The left pane

runs objects which are included in the (current) application. The right pane
offers details about the object selected (left pane).

• A new application consists of the sections external functions, internal
functions, popup menus, classes, and windows.

• The right pane also shows the “assistants” which help during coding: controls
(which includes the child objects which can be contained in a window), and
the Coding Assistant, which displays messages or functions which could be
used later.

The content of a new application depends on a file named Newapp.App, which is
always read and copied when SQLWindows is started or a new application is
created over File/New.

18

Illus.: SQLWindows startup screen (explanations below)

A few comments about the startup screen:
• The screen is divided into two main sections, called panes. The left pane

runs objects which are included in the (current) application. The right pane
offers details about the object selected (left pane).

• A new application consists of the sections external functions, internal
functions, popup menus, classes, and windows.

• The right pane also shows the “assistants” which help during coding: controls
(which includes the child objects which can be contained in a window), and
the Coding Assistant, which displays messages or functions which could be
used later.

The content of a new application depends on a file named Newapp.App, which is
always read and copied when SQLWindows is started or a new application is
created over File/New.

19

The File Newapp.App
The file Newapp.App is created during Gupta installation in the directory
\Gupta\Templates\. It serves as a template (bare framework) for creating new
applications. This means that every time the selection is made over File/New to
create a new application, a copy of Newapp.App is created and added to main
memory. This is then edited and saved under a new name.
Of course the template Newapp.App can be modified. This is a good idea in
cases where recurring settings or objects (e.g., a MDI window with a certain
menu control) are used. Then the elements donʼt need to be added each time
when writing a new application. All that is necessary is to save a new application
which has been written with the desired objects under the name Newapp.App.
Another variation is to create yet another file as template for new applications. Its
settings can be made from the menu option Tools/Preferences.

Components
Components are already present in the template file Newapp.App. The extent and
functionality of these components are almost unlimitedly variable. Not entirely,
though, because a few components cannot be removed from an application.
The following overview lists the above mentioned components as they appear in
Newapp.App after installation and offers brief descriptions of their contents.
Component Content
External functions DLL files containing C or assembler functions
Internal functions Functions written by user in SAL
Popup menus Prefab menu options for top level windows (e.g., typical

Windows options like edit, copy)
Classes Functions and quick object classes which are integrated

over APL files or are defined in the source code itself
Windows All top level or child windows (e.g., objects) that belong to

the application
Every object (e.g., a new MDI window or a pushbutton) is added to the list of
components. This list can be displayed by opening the individual sections.

20

Using Controls and the Coding Assistant
Two examples explain the use of these tools.

Controls
Controls should be used here to add a pushbutton to a form window. Since the
application does not yet feature a form window, however, the form window must
first be added.
To add a form window to an application, click with the right mouse button on the
entry “Windows”, select the option “New” and then “Form Window”.

Illus.: Adding a new form window to an application

Comments:
• The form window is initially unnamed. This is the first thing to enter; here, the

name “frmCustomer”(names like “frm1” are unsuitable because complex
applications often have10-20 form windows, making numbering relatively
useless).

• A form window can be renamed later by right clicking it and selecting
“Rename”.

• If the entry “(no name)” is not changed, an error message will appear.

20

Using Controls and the Coding Assistant
Two examples explain the use of these tools.

Controls
Controls should be used here to add a pushbutton to a form window. Since the
application does not yet feature a form window, however, the form window must
first be added.
To add a form window to an application, click with the right mouse button on the
entry “Windows”, select the option “New” and then “Form Window”.

Illus.: Adding a new form window to an application

Comments:
• The form window is initially unnamed. This is the first thing to enter; here, the

name “frmCustomer”(names like “frm1” are unsuitable because complex
applications often have10-20 form windows, making numbering relatively
useless).

• A form window can be renamed later by right clicking it and selecting
“Rename”.

• If the entry “(no name)” is not changed, an error message will appear.

21

• Top level windows (i.e., form windows table windows, dialog boxes, and to
some extent also MDI windows) are always added to an application as
described above.

• Which top level windows can be added depends on the associated libraries.
Here, for instance, the quick tab window is not shown (and therefore cannot
be added). To enable use of this special object (which will be described more
completely later) the relevant library must first be associated [with the
application. Note that libraries can only be added at the start of an
application. First thing, then is to click the application name in the left pane,
which displays, among other things, the option “Libraries”. Click this option to
activate that section; right click “Libraries” and then “Add Next Level” to
display a menu which includes the library named QCKTABS.APL. Clicking
this name adds the library; thereafter, quick tab windows are available to the
application.

• Beginners can also add top level windows easily with a wizard (menu
“Component/Wizards” or the button with the magic wand). The programmer
is then prompted through all absolutely necessary entries.

To add a pushbutton to the new form window:
• First, the form window which will be furnished with a pushbutton must be

selected; right click the form windowʼs name in the left pane and select
“select in layout” from the menu. The newly added form window is now
displayed in the right pane (shortcut: Ctrl+L).

• Next, the pushbutton is added to the form window (first check that the
controls window is visible; if not, display it using Alt+4 or from the toolbar).
Select the pushbutton object from the controls window by clicking on it once.
Below, the word “standard” appears, meaning that currently only standard
classes are available (this is sufficient at this time; later, other class names
will be shown).

• The cursor now moves automatically to the form window, changes its
appearance and indicates that clicking (on a particular spot in the form
window) will add a pushbutton. The buttonʼs size can also be set at this time
by dragging the mouse (move the mouse to the right while holding down the
mouse button).

• After the pushbutton has been added, the word “untitled” appears and can
immediately be changed. Note that this word causes no error message
because the name with which this pushbutton is targeted is actually “pb1”
rather than “untitled”; this can be checked by double clicking the pushbutton
and selecting “Object Name” from the menu. The buttonʼs name can be
changed at any time.

22

Now the pushbutton has been added. The Coding Assistant is used to assign an
action to the pushbutton.

Coding Assistant
The Coding Assistant is used to associate an action with a pushbutton. First, the
Coding Assistant must be started (Alt+2 or from the toolbar) and the following
steps taken:
• First the pushbuttonʼs so-called message actions must be defined. Open this

by either right clicking the pushbutton and selecting the option “Explore
Actions”, or simply clicking the pushbutton and shifting over the “Actions”
option to the message actions.

Illus.: A pushbuttonʼs message actions (with coding assistant)

• The Coding Assistant now shows a list of entries which all begin with “On
SAM_”. These are the possible messages available for a pushbutton in this
location (if Coding Assistant doesnʼt display the entries, it can be given a little
help by hitting first the Insert key and then the Esc key on the keyboard). The
entry On SAM_Click should now be chosen be double clicking it. This adds
the line to the background screen. The Coding Assistant now changes its

23

appearance (displaying two windows) and content (the messages are now
shown at the top and SAL statements below).

Illus.: Two-part Coding Assistant

• Now a function is invoked. This is done with the statement Call, by double
clicking it. This word is then also added and the Coding Assistant now shows
the functions of the SAL language (later, other, individual functions will also
be displayed).

• The sought function is named SalMessageBeep(). It can be displayed by
scrolling through the list or entering “Salme” in the input field. The function is
then marked and can be added by double clicking it. Online help for this
function can be used to confirm an entryʼs function and is started by hitting
F1.

22

Now the pushbutton has been added. The Coding Assistant is used to assign an
action to the pushbutton.

Coding Assistant
The Coding Assistant is used to associate an action with a pushbutton. First, the
Coding Assistant must be started (Alt+2 or from the toolbar) and the following
steps taken:
• First the pushbuttonʼs so-called message actions must be defined. Open this

by either right clicking the pushbutton and selecting the option “Explore
Actions”, or simply clicking the pushbutton and shifting over the “Actions”
option to the message actions.

Illus.: A pushbuttonʼs message actions (with coding assistant)

• The Coding Assistant now shows a list of entries which all begin with “On
SAM_”. These are the possible messages available for a pushbutton in this
location (if Coding Assistant doesnʼt display the entries, it can be given a little
help by hitting first the Insert key and then the Esc key on the keyboard). The
entry On SAM_Click should now be chosen be double clicking it. This adds
the line to the background screen. The Coding Assistant now changes its

23

appearance (displaying two windows) and content (the messages are now
shown at the top and SAL statements below).

Illus.: Two-part Coding Assistant

• Now a function is invoked. This is done with the statement Call, by double
clicking it. This word is then also added and the Coding Assistant now shows
the functions of the SAL language (later, other, individual functions will also
be displayed).

• The sought function is named SalMessageBeep(). It can be displayed by
scrolling through the list or entering “Salme” in the input field. The function is
then marked and can be added by double clicking it. Online help for this
function can be used to confirm an entryʼs function and is started by hitting
F1.

24

Illus.: The function SalMessageBeep()

• As the word “Number” implies, starting the function requires a numerical
value. Here, the value “-1” is entered, which creates the standard computer
beep (details can be easily displayed by double clicking the function name
and hitting F1; scrolling through help will reveal an example of this function).

• After the value has been entered, the program can be started with the F7
function key (a name must be entered at initial startup). If, after successful
compilation, the pushbutton is pressed, an expressive “beep” will sound.

This small application can also, like every other windows program, be ended with
the key combination Alt-F4 (or another pushbutton can be added that invokes the
function SalQuit(), which ends the application. Coding this function will be
described later).

A Few Important Menu Options
in the Gupta Development Environment

A few menu options in the development environment are relatively important and
are therefore briefly introduced here. During orientation with and later
development of applications, one should occasionally check that, for instance, the

